• Mindscape ๐Ÿ”ฅ
    • Playlist ๐ŸŽง
  • ๐Ÿค– Artifical Intelligence

    • 1. Basics; Linear Algebra
    • 2. Basics; Linear Algebra (2), Search (1)
    • 3. Search (2)
    • 4. Knowledge and Logic (1)
    • 5. Knowledge and Logic (2)
    • 6. Probability
    • 7. Information Theory
    • 8. Probabilitc Reasoning (2)
    • 9. Probabilitc Reasoning (3)
    • 10. Machine Learning (1)
    • 11. Machine Learning (2)
    • 12. Machine Learning (3)
    • 13. Linear Models
    • 14. Other Classic ML Models (1)
    • 15. Other Classic ML Models (2)
  • ๐Ÿ”’ Computer Security

    • 01. Overview
    • 02. ์ •๋ณด๋ณด์•ˆ์ •์ฑ… ๋ฐ ๋ฒ•๊ทœ
    • 03. Cryptographic Tools
    • 04. User Authentication
    • 05. Access Control
    • 06. Database Security
    • 07. Malicious Software
    • 08. Firmware Analysis
  • ๐Ÿ—„๏ธ Database System

    • 1. Introduction
    • 2. Relational Model
    • 3. SQL
    • 6. E-R Model
    • 7. Relational Database Design (1)
    • 7. Relational Database Design (2)
    • 13. Data Storage Structures
    • 14. Indexing
    • 15. Query Processing
  • ๐Ÿ“ Software Engineering

    • 2. Introduction to Software Engineering
    • 3. Process
    • 4. Process Models
    • 5. Agile
    • 6. Requirements
    • 7. Requirements Elicitation and Documentation
    • 8. Architecture
    • 9. Unified Modelling Language
    • 10. Object-Oriented Analysis
    • Object-Oriented Design
  • ๐Ÿง  Algorithm

    • Python ์‹œ๊ฐ„ ์ดˆ๊ณผ ๋ฐฉ์ง€๋ฅผ ์œ„ํ•œ ํŒ
    • C++ std::vector ์‚ฌ์šฉ๋ฒ• ์ •๋ฆฌ
    • Vim ์‚ฌ์šฉ ๋งค๋‰ด์–ผ
    • 1018๋ฒˆ: ์ฒด์ŠคํŒ ๋‹ค์‹œ ์น ํ•˜๊ธฐ
    • 1966๋ฒˆ: ํ”„๋ฆฐํ„ฐ ํ

1. Basics; Linear Algebra

๊ฐœ์š”

  • ์„ ํ˜•๋Œ€์ˆ˜ํ•™(Linear Algebra) ๊ฐ„๋žต ๊ฒ€ํ† 
  • ๋ณธ ๊ฐ•์˜์™€ ๊ฐ€์žฅ ๊ด€๋ จ ๊นŠ์€ ํ•ต์‹ฌ ๊ฐœ๋…์— ์ดˆ์ 

๊ธฐ๋ณธ ๊ฐœ๋… ๋ฐ ํ‘œ๊ธฐ๋ฒ• (Basic Concepts and Notation)

์„ ํ˜•๋Œ€์ˆ˜ํ•™ (Linear Algebra)

์„ ํ˜• ๋ฐฉ์ •์‹(linear equations) ์ง‘ํ•ฉ์„ ๊ฐ„๊ฒฐํ•˜๊ฒŒ ํ‘œํ˜„ํ•˜๊ณ  ์—ฐ์‚ฐํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ๊ณต

{4x1โˆ’5x2=โˆ’13โˆ’2x1+3x2=9โ‡’Ax=b\begin{cases} 4x_1 - 5x_2 = -13 \\ -2x_1 + 3x_2 = 9 \end{cases} \Rightarrow Ax = b {4x1โ€‹โˆ’5x2โ€‹=โˆ’13โˆ’2x1โ€‹+3x2โ€‹=9โ€‹โ‡’Ax=b

A=[4โˆ’5โˆ’23],b=[โˆ’139]A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, b = \begin{bmatrix} -13 \\ 9 \end{bmatrix} A=[4โˆ’2โ€‹โˆ’53โ€‹],b=[โˆ’139โ€‹]

์Šค์นผ๋ผ (Scalars)

  • ๋‹จ์ผ ์ˆซ์ž(single number)
  • ์ •์ˆ˜(Integers), ์‹ค์ˆ˜(real numbers), ์œ ๋ฆฌ์ˆ˜(rational numbers) ๋“ฑ...
  • ์ดํƒค๋ฆญ์ฒด (aaa, nnn, xxx) ๋กœ ํ‘œ๊ธฐ

๋ฒกํ„ฐ (Vectors)

  • 1์ฐจ์› ์ˆซ์ž ๋ฐฐ์—ด(1-D array of numbers)
  • ์†Œ๋ฌธ์ž ๋ณผ๋“œ ๋กœ๋งˆ์ž ํ‘œ๊ธฐ
  • ๋Œ€๋ถ€๋ถ„ ์—ด ๋ฒกํ„ฐ(column vector)๋กœ ํ‘œํ˜„
    • (ํ–‰ ๋ฒกํ„ฐ(row vector) xT=(x1,x2,โ€ฆ,xn)\mathbf{x}^T = (x_1, x_2, \dots, x_n)xT=(x1โ€‹,x2โ€‹,โ€ฆ,xnโ€‹)๊ณผ ๋Œ€์กฐ)

x=[x1x2x3โ‹ฎxn]\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} x=โ€‹x1โ€‹x2โ€‹x3โ€‹โ‹ฎxnโ€‹โ€‹โ€‹

  • ์‹ค์ˆ˜(real), ์ด์ง„์ˆ˜(binary), ์ •์ˆ˜(integer) ๋“ฑ ๊ฐ€๋Šฅ
  • ํƒ€์ž… ๋ฐ ํฌ๊ธฐ ํ‘œ๊ธฐ ์˜ˆ: xโˆˆRn\mathbf{x} \in \mathbb{R}^nxโˆˆRn

ํ–‰๋ ฌ (Matrices)

  • 2์ฐจ์› ์ˆซ์ž ๋ฐฐ์—ด(2-D array of numbers)
  • ํƒ€์ž… ๋ฐ ํ˜•ํƒœ(shape) ํ‘œ๊ธฐ ์˜ˆ: mmmํ–‰ nnn์—ด ํ–‰๋ ฌ AโˆˆRmร—nA \in \mathbb{R}^{m \times n}AโˆˆRmร—n
  • AAA์˜ jjj๋ฒˆ์งธ ์—ด: aj\mathbf{a}_jajโ€‹ ๋˜๋Š” A:,j\mathbf{A}_{:,j}A:,jโ€‹
  • AAA์˜ iii๋ฒˆ์งธ ํ–‰: aiT\mathbf{a}_i^TaiTโ€‹ ๋˜๋Š” Ai,:\mathbf{A}_{i,:}Ai,:โ€‹

ํ…์„œ (Tensors)

  • ์ˆซ์ž ๋ฐฐ์—ด
  • 0์ฐจ์›: ์Šค์นผ๋ผ(scalar)
  • 1์ฐจ์›: ๋ฒกํ„ฐ(vector)
  • 2์ฐจ์›: ํ–‰๋ ฌ(matrix)
  • ๋˜๋Š” ๊ทธ ์ด์ƒ์˜ ์ฐจ์› ๊ฐ€๋Šฅ

ํ–‰๋ ฌ ๊ณฑ์…ˆ (Matrix Multiplication)

  • AโˆˆRmร—nA \in \mathbb{R}^{m \times n}AโˆˆRmร—n๊ณผ BโˆˆRnร—pB \in \mathbb{R}^{n \times p}BโˆˆRnร—p์˜ ๊ณฑ C=ABโˆˆRmร—pC = AB \in \mathbb{R}^{m \times p}C=ABโˆˆRmร—p

    Cij=โˆ‘k=1nAikBkjC_{ij} = \sum_{k=1}^n A_{ik} B_{kj} Cijโ€‹=k=1โˆ‘nโ€‹Aikโ€‹Bkjโ€‹

๋ฒกํ„ฐ-๋ฒกํ„ฐ ๊ณฑ (Vector-Vector Products)

  • ๋‘ ๋ฒกํ„ฐ x,yโˆˆRn\mathbf{x}, \mathbf{y} \in \mathbb{R}^nx,yโˆˆRn์— ๋Œ€ํ•ด, ๋‚ด์ (inner product) ๋˜๋Š” ์ ๊ณฑ(dot product) xTy\mathbf{x}^T \mathbf{y}xTy๋Š” ์‹ค์ˆ˜

    xTyโˆˆR=[x1x2โ€ฆxn][y1y2โ‹ฎyn]=โˆ‘i=1nxiyi\mathbf{x}^T \mathbf{y} \in \mathbb{R} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i xTyโˆˆR=[x1โ€‹โ€‹x2โ€‹โ€‹โ€ฆโ€‹xnโ€‹โ€‹]โ€‹y1โ€‹y2โ€‹โ‹ฎynโ€‹โ€‹โ€‹=i=1โˆ‘nโ€‹xiโ€‹yiโ€‹

  • xTy=yTx\mathbf{x}^T \mathbf{y} = \mathbf{y}^T \mathbf{x}xTy=yTx
  • ๋ฒกํ„ฐ xโˆˆRm\mathbf{x} \in \mathbb{R}^mxโˆˆRm, yโˆˆRn\mathbf{y} \in \mathbb{R}^nyโˆˆRn์— ๋Œ€ํ•ด (ํฌ๊ธฐ๊ฐ€ ๊ฐ™์„ ํ•„์š” ์—†์Œ), xyTโˆˆRmร—n\mathbf{x} \mathbf{y}^T \in \mathbb{R}^{m \times n}xyTโˆˆRmร—n๋Š” ์™ธ์ (outer product)

ํ–‰๋ ฌ-๋ฒกํ„ฐ ๊ณฑ (Matrix-Vector Products)

  • ํ–‰๋ ฌ AโˆˆRmร—nA \in \mathbb{R}^{m \times n}AโˆˆRmร—n๊ณผ ๋ฒกํ„ฐ xโˆˆRn\mathbf{x} \in \mathbb{R}^nxโˆˆRn์˜ ๊ณฑ y=AxโˆˆRm\mathbf{y} = A \mathbf{x} \in \mathbb{R}^my=AxโˆˆRm
  • ํ–‰๋ ฌ-๋ฒกํ„ฐ ๊ณฑ์— ๋Œ€ํ•œ ๋‹ค๋ฅธ ๊ด€์ 
  • y\mathbf{y}y์˜ iii๋ฒˆ์งธ ์›์†Œ yiy_iyiโ€‹๋Š” AAA์˜ iii๋ฒˆ์งธ ํ–‰๊ณผ x\mathbf{x}x์˜ ๋‚ด์ (yi=aiTxy_i = \mathbf{a}_i^T \mathbf{x}yiโ€‹=aiTโ€‹x)
  • y\mathbf{y}y๋Š” AAA์˜ ์—ด ๋ฒกํ„ฐ(columns)์˜ ์„ ํ˜• ๊ฒฐํ•ฉ(linear combination)์ด๋ฉฐ, ์„ ํ˜• ๊ฒฐํ•ฉ์˜ ๊ณ„์ˆ˜๋Š” x\mathbf{x}x์˜ ์›์†Œ
  • ํ–‰ ๋ฒกํ„ฐ๋ฅผ ์™ผ์ชฝ์— ๊ณฑํ•˜๊ธฐ: yT=xTA\mathbf{y}^T = \mathbf{x}^T AyT=xTA (๋‹จ, AโˆˆRmร—nA \in \mathbb{R}^{m \times n}AโˆˆRmร—n, xโˆˆRm\mathbf{x} \in \mathbb{R}^mxโˆˆRm, yโˆˆRn\mathbf{y} \in \mathbb{R}^nyโˆˆRn)
  • yT\mathbf{y}^TyT์˜ iii๋ฒˆ์งธ ์›์†Œ๋Š” x\mathbf{x}x์™€ AAA์˜ iii๋ฒˆ์งธ ์—ด์˜ ๋‚ด์ 
  • yT\mathbf{y}^TyT๋Š” AAA์˜ ํ–‰ ๋ฒกํ„ฐ(rows)์˜ ์„ ํ˜• ๊ฒฐํ•ฉ์ด๋ฉฐ, ์„ ํ˜• ๊ฒฐํ•ฉ์˜ ๊ณ„์ˆ˜๋Š” x\mathbf{x}x์˜ ์›์†Œ

ํ–‰๋ ฌ-ํ–‰๋ ฌ ๊ณฑ (Matrix-Matrix Products)

  • ํ–‰๋ ฌ-ํ–‰๋ ฌ ๊ณฑ์„ ๋ณด๋Š” 4๊ฐ€์ง€ ๊ด€์ 
    1. ๋ฒกํ„ฐ-๋ฒกํ„ฐ ๊ณฑ (vector-vector products)์˜ ์ง‘ํ•ฉ
      • CCC์˜ (i,j)(i, j)(i,j)๋ฒˆ์งธ ์›์†Œ๋Š” AAA์˜ iii๋ฒˆ์งธ ํ–‰๊ณผ BBB์˜ jjj๋ฒˆ์งธ ์—ด์˜ ๋‚ด์ 
    2. ์™ธ์  (outer products)์˜ ํ•ฉ
      • AAA๋ฅผ ์—ด ๋ฒกํ„ฐ๋กœ, BBB๋ฅผ ํ–‰ ๋ฒกํ„ฐ๋กœ ํ‘œํ˜„
      • ABABAB๋Š” ๋ชจ๋“  iii์— ๋Œ€ํ•ด AAA์˜ iii๋ฒˆ์งธ ์—ด๊ณผ BBB์˜ iii๋ฒˆ์งธ ํ–‰์˜ ์™ธ์ ์˜ ํ•ฉ
    3. ํ–‰๋ ฌ-๋ฒกํ„ฐ ๊ณฑ (matrix-vector products)์˜ ์ง‘ํ•ฉ
      • BBB๋ฅผ ์—ด ๋ฒกํ„ฐ๋กœ ํ‘œํ˜„ํ•˜๋ฉด, CCC์˜ ์—ด๋“ค์€ AAA์™€ BBB์˜ ์—ด๋“ค์˜ ํ–‰๋ ฌ-๋ฒกํ„ฐ ๊ณฑ(ci=Abi\mathbf{c}_i = A \mathbf{b}_iciโ€‹=Abiโ€‹)
    4. ๋‹ค๋ฅธ ํ–‰๋ ฌ-๋ฒกํ„ฐ ๊ณฑ (matrix-vector products)์˜ ์ง‘ํ•ฉ (ํ–‰ ๋ฒกํ„ฐ-ํ–‰๋ ฌ ํ˜•ํƒœ)
      • AAA๋ฅผ ํ–‰ ๋ฒกํ„ฐ๋กœ ํ‘œํ˜„ํ•˜๋ฉด, CCC์˜ ํ–‰๋“ค์€ AAA์˜ ํ–‰๋“ค๊ณผ BBB์˜ ํ–‰๋ ฌ-๋ฒกํ„ฐ ๊ณฑ(ciT=aiTB\mathbf{c}_i^T = \mathbf{a}_i^T BciTโ€‹=aiTโ€‹B)
  • ์ด๋Ÿฌํ•œ ๋‹ค์–‘ํ•œ ๊ด€์ ์˜ ์ง์ ‘์ ์ธ ์ด์ ์€ ์Šค์นผ๋ผ(scalars) ๋Œ€์‹  ๋ฒกํ„ฐ(vectors) ์ˆ˜์ค€/๋‹จ์œ„์—์„œ ์—ฐ์‚ฐ ๊ฐ€๋Šฅ
  • ํ–‰๋ ฌ ๊ณฑ์…ˆ์˜ ๋ช‡ ๊ฐ€์ง€ ๊ธฐ๋ณธ ์†์„ฑ
  • ๊ฒฐํ•ฉ ๋ฒ•์น™(associative): A(BC)=(AB)CA(BC) = (AB)CA(BC)=(AB)C
  • ๋ถ„๋ฐฐ ๋ฒ•์น™(distributive): A(B+C)=AB+ACA(B+C) = AB + ACA(B+C)=AB+AC
  • ์ผ๋ฐ˜์ ์œผ๋กœ ๊ตํ™˜ ๋ฒ•์น™(commutative) ๋ถˆ์„ฑ๋ฆฝ: ABโ‰ BAAB \neq BAAB๎€ =BA

์—ฐ์‚ฐ ๋ฐ ์†์„ฑ (Operations and Properties)

ํ•ญ๋“ฑ ํ–‰๋ ฌ (Identity Matrix) & ๋Œ€๊ฐ ํ–‰๋ ฌ (Diagonal matrix)

  • ํ•ญ๋“ฑ ํ–‰๋ ฌ IโˆˆRnร—nI \in \mathbb{R}^{n \times n}IโˆˆRnร—n: ์ฃผ ๋Œ€๊ฐ์„  ์›์†Œ๋Š” 1, ๋‚˜๋จธ์ง€ ์›์†Œ๋Š” 0์ธ ์ •๋ฐฉ ํ–‰๋ ฌ(square matrix)
  • ๋Œ€๊ฐ ํ–‰๋ ฌ(Diagonal matrix): ์ฃผ ๋Œ€๊ฐ์„  ์ด์™ธ์˜ ๋ชจ๋“  ์›์†Œ๊ฐ€ 0์ธ ํ–‰๋ ฌ

    D=diag(d1,d2,โ€ฆ,dn)D = \text{diag}(d_1, d_2, \dots, d_n) D=diag(d1โ€‹,d2โ€‹,โ€ฆ,dnโ€‹)

์ „์น˜ (Transpose)

  • ํ–‰๊ณผ ์—ด์„ ๋’ค์ง‘์€(flipping) ๊ฒฐ๊ณผ
  • ์†์„ฑ
    • (AT)T=A(A^T)^T = A(AT)T=A
    • (AB)T=BTAT(AB)^T = B^T A^T(AB)T=BTAT
    • (A+B)T=AT+BT(A+B)^T = A^T + B^T(A+B)T=AT+BT

๋Œ€์นญ ํ–‰๋ ฌ (Symmetric Matrices)

  • ์ •๋ฐฉ ํ–‰๋ ฌ AโˆˆRnร—nA \in \mathbb{R}^{n \times n}AโˆˆRnร—n์ด A=ATA = A^TA=AT์ด๋ฉด ๋Œ€์นญ
  • A=โˆ’ATA = -A^TA=โˆ’AT์ด๋ฉด ๋ฐ˜๋Œ€์นญ(anti-symmetric)
  • ์ž„์˜์˜ ํ–‰๋ ฌ AโˆˆRnร—nA \in \mathbb{R}^{n \times n}AโˆˆRnร—n์— ๋Œ€ํ•ด, A+ATA + A^TA+AT๋Š” ๋Œ€์นญ, Aโˆ’ATA - A^TAโˆ’AT๋Š” ๋ฐ˜๋Œ€์นญ
  • ๋”ฐ๋ผ์„œ, ์ž„์˜์˜ ์ •๋ฐฉ ํ–‰๋ ฌ AโˆˆRnร—nA \in \mathbb{R}^{n \times n}AโˆˆRnร—n์€ ๋Œ€์นญ ํ–‰๋ ฌ๊ณผ ๋ฐ˜๋Œ€์นญ ํ–‰๋ ฌ์˜ ํ•ฉ์œผ๋กœ ํ‘œํ˜„ ๊ฐ€๋Šฅ
  • ํฌ๊ธฐ nnn์ธ ๋ชจ๋“  ๋Œ€์นญ ํ–‰๋ ฌ์˜ ์ง‘ํ•ฉ์€ Sn\mathbb{S}^nSn์œผ๋กœ ํ‘œ๊ธฐ
    • (AโˆˆSnA \in \mathbb{S}^nAโˆˆSn์€ AAA๊ฐ€ nร—nn \times nnร—n ๋Œ€์นญ ํ–‰๋ ฌ์ž„์„ ์˜๋ฏธ)

๋Œ€๊ฐํ•ฉ (Trace)

  • ์ •๋ฐฉ ํ–‰๋ ฌ AโˆˆRnร—nA \in \mathbb{R}^{n \times n}AโˆˆRnร—n์˜ ๋Œ€๊ฐํ•ฉ tr(A)\text{tr}(A)tr(A): ๋Œ€๊ฐ์„  ์›์†Œ์˜ ํ•ฉ

    tr(A)=โˆ‘i=1nAii\text{tr}(A) = \sum_{i=1}^n A_{ii} tr(A)=i=1โˆ‘nโ€‹Aiiโ€‹

  • ์†์„ฑ
    • tr(A)=tr(AT)\text{tr}(A) = \text{tr}(A^T)tr(A)=tr(AT)
    • tr(A+B)=tr(A)+tr(B)\text{tr}(A + B) = \text{tr}(A) + \text{tr}(B)tr(A+B)=tr(A)+tr(B)
    • tโˆˆRt \in \mathbb{R}tโˆˆR, tr(tA)=ttr(A)\text{tr}(tA) = t \text{tr}(A)tr(tA)=ttr(A)
    • tr(AB)=tr(BA)\text{tr}(AB) = \text{tr}(BA)tr(AB)=tr(BA)
    • tr(ABC)=tr(BCA)=tr(CAB)\text{tr}(ABC) = \text{tr}(BCA) = \text{tr}(CAB)tr(ABC)=tr(BCA)=tr(CAB)

Norms (๋†ˆ)

  • ๋ฒกํ„ฐ x\mathbf{x}x์˜ norm์€ ๋น„๊ณต์‹์ ์œผ๋กœ ๋ฒกํ„ฐ์˜ "๊ธธ์ด(length)"๋ฅผ ์ธก์ •ํ•˜๋Š” ์ฒ™๋„
  • ํ”ํžˆ ์‚ฌ์šฉ๋˜๋Š” ์œ ํด๋ฆฌ๋“œ norm(Euclidean norm) ๋˜๋Š” l2l_2l2โ€‹ norm

    โˆฅxโˆฅ2=โˆ‘i=1nxi2\Vert \mathbf{x} \Vert_2 = \sqrt{\sum_{i=1}^n x_i^2} โˆฅxโˆฅ2โ€‹=i=1โˆ‘nโ€‹xi2โ€‹โ€‹

  • โˆฅxโˆฅ22=xTx\Vert \mathbf{x} \Vert_2^2 = \mathbf{x}^T \mathbf{x}โˆฅxโˆฅ22โ€‹=xTx
  • ๋ณด๋‹ค ๊ณต์‹์ ์œผ๋กœ, norm์€ ๋‹ค์Œ 4๊ฐ€์ง€ ์†์„ฑ์„ ๋งŒ์กฑํ•˜๋Š” ํ•จ์ˆ˜ f:Rnโ†’Rf: \mathbb{R}^n \to \mathbb{R}f:Rnโ†’R
    1. ๋น„์Œ์„ฑ(non-negativity)
      • ๋ชจ๋“  xโˆˆRn\mathbf{x} \in \mathbb{R}^nxโˆˆRn์— ๋Œ€ํ•ด, f(x)โ‰ฅ0f(\mathbf{x}) \ge 0f(x)โ‰ฅ0
    2. ๋ช…ํ™•์„ฑ(definiteness)
      • f(x)=0f(\mathbf{x}) = 0f(x)=0์€ x=0\mathbf{x} = \mathbf{0}x=0์ธ ๊ฒฝ์šฐ์—๋งŒ ์„ฑ๋ฆฝ
    3. ๋™์ฐจ์„ฑ(homogeneity)
      • ๋ชจ๋“  xโˆˆRn\mathbf{x} \in \mathbb{R}^nxโˆˆRn, tโˆˆRt \in \mathbb{R}tโˆˆR์— ๋Œ€ํ•ด, f(tx)=โˆฃtโˆฃf(x)f(t\mathbf{x}) = |t| f(\mathbf{x})f(tx)=โˆฃtโˆฃf(x)
    4. ์‚ผ๊ฐ ๋ถ€๋“ฑ์‹(triangle inequality)
      • ๋ชจ๋“  x,yโˆˆRn\mathbf{x}, \mathbf{y} \in \mathbb{R}^nx,yโˆˆRn์— ๋Œ€ํ•ด, f(x+y)โ‰คf(x)+f(y)f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})f(x+y)โ‰คf(x)+f(y)

lpl_plpโ€‹ norm

โˆฅxโˆฅp=(โˆ‘iโˆฃxiโˆฃp)1/p\Vert \mathbf{x} \Vert_p = \left( \sum_{i} |x_i|^p \right)^{1/p} โˆฅxโˆฅpโ€‹=(iโˆ‘โ€‹โˆฃxiโ€‹โˆฃp)1/p

  • L1 norm (p=1p=1p=1): โˆฅxโˆฅ1=โˆ‘iโˆฃxiโˆฃ\Vert \mathbf{x} \Vert_1 = \sum_{i} |x_i|โˆฅxโˆฅ1โ€‹=โˆ‘iโ€‹โˆฃxiโ€‹โˆฃ
  • ์ตœ๋Œ€ norm (Max norm) (p=โˆžp=\inftyp=โˆž): โˆฅxโˆฅโˆž=maxโกiโˆฃxiโˆฃ\Vert \mathbf{x} \Vert_{\infty} = \max_{i} |x_i|โˆฅxโˆฅโˆžโ€‹=maxiโ€‹โˆฃxiโ€‹โˆฃ

ํ”„๋กœ๋ฒ ๋‹ˆ์šฐ์Šค norm (Frobenius norm) (ํ–‰๋ ฌ์— ๋Œ€ํ•œ norm)

์„ ํ˜• ๋…๋ฆฝ (Linear Independence)

  • ๋ฒกํ„ฐ ์ง‘ํ•ฉ {x1,x2,โ€ฆ,xn}โŠ‚Rm\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \subset \mathbb{R}^m{x1โ€‹,x2โ€‹,โ€ฆ,xnโ€‹}โŠ‚Rm์€, ์–ด๋–ค ๋ฒกํ„ฐ๋„ ๋‚˜๋จธ์ง€ ๋ฒกํ„ฐ๋“ค์˜ ์„ ํ˜• ๊ฒฐํ•ฉ์œผ๋กœ ํ‘œํ˜„๋  ์ˆ˜ ์—†์„ ๋•Œ ์„ ํ˜• ๋…๋ฆฝ(linearly independent)
  • ์„ ํ˜• ์ข…์†(linearly dependent) ์˜ˆ: x3=โˆ’2x1+x2โ†’\mathbf{x}_3 = -2\mathbf{x}_1 + \mathbf{x}_2 \tox3โ€‹=โˆ’2x1โ€‹+x2โ€‹โ†’ ์„ ํ˜• ์ข…์†

๊ณ„์ˆ˜ (Rank)

  • ํ–‰๋ ฌ AโˆˆRmร—nA \in \mathbb{R}^{m \times n}AโˆˆRmร—n์˜ ์—ด ๊ณ„์ˆ˜(column rank): AAA์˜ ์—ด ๋ฒกํ„ฐ ์ค‘ ์„ ํ˜• ๋…๋ฆฝ ์ง‘ํ•ฉ์„ ๊ตฌ์„ฑํ•˜๋Š” ๊ฐ€์žฅ ํฐ ๋ถ€๋ถ„ ์ง‘ํ•ฉ์˜ ํฌ๊ธฐ
  • ๊ฐ„๋‹จํžˆ AAA์˜ ์„ ํ˜• ๋…๋ฆฝ ์—ด์˜ ์ˆ˜
  • ํ–‰ ๊ณ„์ˆ˜(row rank): AAA์˜ ํ–‰ ๋ฒกํ„ฐ ์ค‘ ์„ ํ˜• ๋…๋ฆฝ ์ง‘ํ•ฉ์„ ๊ตฌ์„ฑํ•˜๋Š” ๊ฐ€์žฅ ํฐ ์ˆ˜
  • ์ž„์˜์˜ ํ–‰๋ ฌ AโˆˆRmร—nA \in \mathbb{R}^{m \times n}AโˆˆRmร—n์— ๋Œ€ํ•ด, ์—ด ๊ณ„์ˆ˜๋Š” ํ–‰ ๊ณ„์ˆ˜์™€ ๊ฐ™์Œ โ‡’\Rightarrowโ‡’ ์ด๋ฅผ ์ด์นญํ•˜์—ฌ AAA์˜ ๊ณ„์ˆ˜(rank(A)\text{rank}(A)rank(A))
  • ์†์„ฑ
  • AโˆˆRmร—nA \in \mathbb{R}^{m \times n}AโˆˆRmร—n์— ๋Œ€ํ•ด, rank(A)โ‰คminโก(m,n)\text{rank}(A) \le \min(m, n)rank(A)โ‰คmin(m,n). rank(A)=minโก(m,n)\text{rank}(A) = \min(m, n)rank(A)=min(m,n)์ด๋ฉด AAA๋Š” ์™„์ „ ๊ณ„์ˆ˜(full rank)
  • rank(A)=rank(AT)\text{rank}(A) = \text{rank}(A^T)rank(A)=rank(AT)
  • rank(AB)โ‰คminโก(rank(A),rank(B))\text{rank}(AB) \le \min(\text{rank}(A), \text{rank}(B))rank(AB)โ‰คmin(rank(A),rank(B))
  • rank(A+B)โ‰คrank(A)+rank(B)\text{rank}(A + B) \le \text{rank}(A) + \text{rank}(B)rank(A+B)โ‰คrank(A)+rank(B)

์ •๋ฐฉ ํ–‰๋ ฌ์˜ ์—ญํ–‰๋ ฌ (Inverse of a Square Matrix)

  • ์ •๋ฐฉ ํ–‰๋ ฌ AโˆˆRnร—nA \in \mathbb{R}^{n \times n}AโˆˆRnร—n์˜ ์—ญํ–‰๋ ฌ Aโˆ’1A^{-1}Aโˆ’1: Aโˆ’1A=I=AAโˆ’1A^{-1} A = I = A A^{-1}Aโˆ’1A=I=AAโˆ’1์„ ๋งŒ์กฑํ•˜๋Š” ์œ ์ผํ•œ ํ–‰๋ ฌ
  • ๋ชจ๋“  ํ–‰๋ ฌ์ด ์—ญํ–‰๋ ฌ์„ ๊ฐ–๋Š” ๊ฒƒ์€ ์•„๋‹˜
  • Aโˆ’1A^{-1}Aโˆ’1์ด ์กด์žฌํ•˜๋ฉด AAA๋Š” ๊ฐ€์—ญ(invertible) ๋˜๋Š” ๋น„ํŠน์ด(non-singular), ๊ทธ๋ ‡์ง€ ์•Š์œผ๋ฉด ๋น„๊ฐ€์—ญ(non-invertible) ๋˜๋Š” ํŠน์ด(singular)
  • ์—ญํ–‰๋ ฌ์„ ๊ฐ€์ง€๋ ค๋ฉด AAA๋Š” ์™„์ „ ๊ณ„์ˆ˜(full rank)์ด์–ด์•ผ ํ•จ
  • ์†์„ฑ
  • (Aโˆ’1)โˆ’1=A(A^{-1})^{-1} = A(Aโˆ’1)โˆ’1=A
  • (AB)โˆ’1=Bโˆ’1Aโˆ’1(AB)^{-1} = B^{-1} A^{-1}(AB)โˆ’1=Bโˆ’1Aโˆ’1
  • (Aโˆ’1)T=(AT)โˆ’1(A^{-1})^T = (A^T)^{-1}(Aโˆ’1)T=(AT)โˆ’1

์ง๊ต ํ–‰๋ ฌ (Orthogonal Matrices)

  • ๋‘ ๋ฒกํ„ฐ x,yโˆˆRn\mathbf{x}, \mathbf{y} \in \mathbb{R}^nx,yโˆˆRn์ด xTy=0\mathbf{x}^T \mathbf{y} = 0xTy=0์ด๋ฉด ์ง๊ต(orthogonal)
  • ๋ฒกํ„ฐ xโˆˆRn\mathbf{x} \in \mathbb{R}^nxโˆˆRn์ด โˆฅxโˆฅ2=1\Vert \mathbf{x} \Vert_2 = 1โˆฅxโˆฅ2โ€‹=1์ด๋ฉด ์ •๊ทœํ™”๋จ(normalized)
  • ์ •๋ฐฉ ํ–‰๋ ฌ UโˆˆRnร—nU \in \mathbb{R}^{n \times n}UโˆˆRnร—n์€ ๋ชจ๋“  ์—ด ๋ฒกํ„ฐ๊ฐ€ ์„œ๋กœ ์ง๊ตํ•˜๊ณ  ์ •๊ทœํ™”๋˜์–ด ์žˆ์œผ๋ฉด ์ง๊ต ํ–‰๋ ฌ
  • ์ด ์—ด ๋ฒกํ„ฐ๋“ค์€ ์ •๊ทœ ์ง๊ต(orthonormal)
  • ์†์„ฑ
  • ์ง๊ต ํ–‰๋ ฌ์˜ ์—ญํ–‰๋ ฌ์€ ์ „์น˜ ํ–‰๋ ฌ UTU=I=UUTU^T U = I = U U^TUTU=I=UUT
  • ์ง๊ต ํ–‰๋ ฌ๋กœ ๋ฒกํ„ฐ์— ์—ฐ์‚ฐํ•ด๋„ ์œ ํด๋ฆฌ๋“œ norm(Euclidean norm)์€ ๋ณ€ํ•˜์ง€ ์•Š์Œ: โˆฅUxโˆฅ2=โˆฅxโˆฅ2\Vert U\mathbf{x} \Vert_2 = \Vert \mathbf{x} \Vert_2โˆฅUxโˆฅ2โ€‹=โˆฅxโˆฅ2โ€‹
    • โˆฅUxโˆฅ22=(Ux)T(Ux)=xTUTUx=xTIx=xTx=โˆฅxโˆฅ22\Vert U\mathbf{x} \Vert_2^2 = (U\mathbf{x})^T (U\mathbf{x}) = \mathbf{x}^T U^T U \mathbf{x} = \mathbf{x}^T I \mathbf{x} = \mathbf{x}^T \mathbf{x} = \Vert \mathbf{x} \Vert_2^2โˆฅUxโˆฅ22โ€‹=(Ux)T(Ux)=xTUTUx=xTIx=xTx=โˆฅxโˆฅ22โ€‹

์ŠคํŒฌ (Span)

  • ๋ฒกํ„ฐ ์ง‘ํ•ฉ {x1,x2,โ€ฆ,xn}\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}{x1โ€‹,x2โ€‹,โ€ฆ,xnโ€‹}์˜ ์ŠคํŒฌ(span)์€ ์ด ๋ฒกํ„ฐ๋“ค์˜ ์„ ํ˜• ๊ฒฐํ•ฉ์œผ๋กœ ํ‘œํ˜„ ๊ฐ€๋Šฅํ•œ ๋ชจ๋“  ๋ฒกํ„ฐ์˜ ์ง‘ํ•ฉ
  • {x1,x2,โ€ฆ,xn}\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}{x1โ€‹,x2โ€‹,โ€ฆ,xnโ€‹}์ด nnn๊ฐœ์˜ ์„ ํ˜• ๋…๋ฆฝ ๋ฒกํ„ฐ ์ง‘ํ•ฉ์ด๋ฉด, span({x1,x2,โ€ฆ,xn})=Rn\text{span}(\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}) = \mathbb{R}^nspan({x1โ€‹,x2โ€‹,โ€ฆ,xnโ€‹})=Rn
  • Rn\mathbb{R}^nRn์˜ ์ž„์˜์˜ ๋ฒกํ„ฐ v\mathbf{v}v๋Š” x1\mathbf{x}_1x1โ€‹๋ถ€ํ„ฐ xn\mathbf{x}_nxnโ€‹๊นŒ์ง€์˜ ์„ ํ˜• ๊ฒฐํ•ฉ์œผ๋กœ ํ‘œํ˜„ ๊ฐ€๋Šฅ

ํˆฌ์˜ (Projection)

  • ๋ฒกํ„ฐ yโˆˆRm\mathbf{y} \in \mathbb{R}^myโˆˆRm์„ {x1,x2,โ€ฆ,xn}(xiโˆˆRm)\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} (\mathbf{x}_i \in \mathbb{R}^m){x1โ€‹,x2โ€‹,โ€ฆ,xnโ€‹}(xiโ€‹โˆˆRm)์˜ ์ŠคํŒฌ ์œ„๋กœ ํˆฌ์˜(projection)
  • vโˆˆspan({x1,x2,โ€ฆ,xn})\mathbf{v} \in \text{span}(\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\})vโˆˆspan({x1โ€‹,x2โ€‹,โ€ฆ,xnโ€‹}) ์ค‘์—์„œ ์œ ํด๋ฆฌ๋“œ norm โˆฅvโˆ’yโˆฅ2\Vert \mathbf{v} - \mathbf{y} \Vert_2โˆฅvโˆ’yโˆฅ2โ€‹์œผ๋กœ ์ธก์ •ํ–ˆ์„ ๋•Œ y\mathbf{y}y์™€ ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ๋ฒกํ„ฐ
  • ํˆฌ์˜ ํ‘œ๊ธฐ: Proj(y;x1,x2,โ€ฆ,xn)=argminvโˆˆspan({x1,โ€ฆ,xn})โˆฅyโˆ’vโˆฅ2\text{Proj}(\mathbf{y}; \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) = \text{argmin}_{\mathbf{v} \in \text{span}(\{\mathbf{x}_1, \dots, \mathbf{x}_n\})} \Vert \mathbf{y} - \mathbf{v} \Vert_2Proj(y;x1โ€‹,x2โ€‹,โ€ฆ,xnโ€‹)=argminvโˆˆspan({x1โ€‹,โ€ฆ,xnโ€‹})โ€‹โˆฅyโˆ’vโˆฅ2โ€‹

ํˆฌ์˜ (Projection) & ์น˜์—ญ (Range)

  • ํ–‰๋ ฌ AโˆˆRmร—nA \in \mathbb{R}^{m \times n}AโˆˆRmร—n์˜ ์น˜์—ญ(range) (๋˜๋Š” ์—ด ๊ณต๊ฐ„(columnspace)) R(A)\mathcal{R}(A)R(A): AAA์˜ ์—ด ๋ฒกํ„ฐ๋“ค์˜ ์ŠคํŒฌ
  • AAA๊ฐ€ ์™„์ „ ๊ณ„์ˆ˜(full rank)์ด๊ณ  n<mn < mn<m์ผ ๋•Œ, ๋ฒกํ„ฐ yโˆˆRm\mathbf{y} \in \mathbb{R}^myโˆˆRm๋ฅผ AAA์˜ ์น˜์—ญ ์œ„๋กœ ํˆฌ์˜

    Proj(y;A)=vโˆ—=argminvโˆˆR(A)โˆฅvโˆ’yโˆฅ2=A(ATA)โˆ’1ATy\text{Proj}(\mathbf{y}; A) = \mathbf{v}^* = \text{argmin}_{\mathbf{v} \in \mathcal{R}(A)} \Vert \mathbf{v} - \mathbf{y} \Vert_2 = A(A^T A)^{-1} A^T \mathbf{y} Proj(y;A)=vโˆ—=argminvโˆˆR(A)โ€‹โˆฅvโˆ’yโˆฅ2โ€‹=A(ATA)โˆ’1ATy

  • ์ฆ๋ช… ์š”์•ฝ: v=Ax\mathbf{v} = A\mathbf{x}v=Ax, vโˆ—=Axโˆ—\mathbf{v}^* = A\mathbf{x}^*vโˆ—=Axโˆ—. AT(vโˆ—โˆ’y)=0\mathbf{A}^T(\mathbf{v}^* - \mathbf{y}) = \mathbf{0}AT(vโˆ—โˆ’y)=0. AT(Axโˆ—โˆ’y)=0\mathbf{A}^T(A\mathbf{x}^* - \mathbf{y}) = \mathbf{0}AT(Axโˆ—โˆ’y)=0. xโˆ—=(ATA)โˆ’1ATy\mathbf{x}^* = (A^T A)^{-1} A^T \mathbf{y}xโˆ—=(ATA)โˆ’1ATy. โˆดvโˆ—=Axโˆ—=A(ATA)โˆ’1ATy\therefore \mathbf{v}^* = A\mathbf{x}^* = A(A^T A)^{-1} A^T \mathbf{y}โˆดvโˆ—=Axโˆ—=A(ATA)โˆ’1ATy
  • (!) ์ตœ์†Œ ์ œ๊ณฑ ์ถ”์ •(least squares estimation of parameters)๊ณผ์˜ ๊ด€๊ณ„ (๋‹ค์Œ ์ˆ˜์—…)
  • AAA๊ฐ€ ๋‹จ์ผ ์—ด ๋ฒกํ„ฐ aโˆˆRm\mathbf{a} \in \mathbb{R}^maโˆˆRm๋งŒ ํฌํ•จํ•˜๋Š” ํŠน์ˆ˜ ๊ฒฝ์šฐ (๋ฒกํ„ฐ๋ฅผ ์ง์„  ์œ„๋กœ ํˆฌ์˜)

    Proj(y;a)=aaTaTay\text{Proj}(\mathbf{y}; \mathbf{a}) = \frac{\mathbf{a} \mathbf{a}^T}{\mathbf{a}^T \mathbf{a}} \mathbf{y} Proj(y;a)=aTaaaTโ€‹y

์˜ ๊ณต๊ฐ„ (Nullspace)

  • ํ–‰๋ ฌ AโˆˆRmร—nA \in \mathbb{R}^{m \times n}AโˆˆRmร—n์˜ ์˜ ๊ณต๊ฐ„(nullspace) N(A)\mathcal{N}(A)N(A): AAA๋ฅผ ๊ณฑํ–ˆ์„ ๋•Œ 0\mathbf{0}0์ด ๋˜๋Š” ๋ชจ๋“  ๋ฒกํ„ฐ์˜ ์ง‘ํ•ฉ

    N(A)={xโˆˆRn:Ax=0}\mathcal{N}(A) = \{\mathbf{x} \in \mathbb{R}^n: A\mathbf{x} = \mathbf{0}\} N(A)={xโˆˆRn:Ax=0}

  • ์ฐธ๊ณ  ์‚ฌํ•ญ
  • R(A)\mathcal{R}(A)R(A)์˜ ๋ฒกํ„ฐ๋Š” ํฌ๊ธฐ mmm, N(A)\mathcal{N}(A)N(A)์˜ ๋ฒกํ„ฐ๋Š” ํฌ๊ธฐ nnn. R(AT)\mathcal{R}(A^T)R(AT)์™€ N(A)\mathcal{N}(A)N(A)์˜ ๋ฒกํ„ฐ๋Š” ๋ชจ๋‘ Rn\mathbb{R}^nRn์— ์†ํ•จ
  • R(AT)\mathcal{R}(A^T)R(AT)์™€ N(A)\mathcal{N}(A)N(A)๋Š” ์„œ๋กœ์†Œ ๋ถ€๋ถ„ ์ง‘ํ•ฉ์ด๋ฉฐ, ํ•จ๊ป˜ Rn\mathbb{R}^nRn ์ „์ฒด ๊ณต๊ฐ„์„ ์ŠคํŒฌ(span)
  • ์ด๋Ÿฌํ•œ ์ง‘ํ•ฉ ์œ ํ˜•์„ ์ง๊ต ์—ฌ ๊ณต๊ฐ„(orthogonal complements)์ด๋ผ๊ณ  ํ•จ
  • R(AT)=N(A)โŠฅ\mathcal{R}(A^T) = \mathcal{N}(A)^{\perp}R(AT)=N(A)โŠฅ (์ฐธ๊ณ : Gilbert Strang, Introduction to Linear Algebra, 5th Edition)

ํ–‰๋ ฌ์‹ (Determinant)

  • ์ •๋ฐฉ ํ–‰๋ ฌ AโˆˆRnร—nA \in \mathbb{R}^{n \times n}AโˆˆRnร—n์˜ ํ–‰๋ ฌ์‹(determinant)
    • detโก:Rnร—nโ†’R\det: \mathbb{R}^{n \times n} \to \mathbb{R}det:Rnร—nโ†’R ํ•จ์ˆ˜, โˆฃAโˆฃ|A|โˆฃAโˆฃ ๋˜๋Š” detโก(A)\det(A)det(A)๋กœ ํ‘œ๊ธฐ
  • ํ–‰๋ ฌ์‹์˜ ๊ธฐํ•˜ํ•™์  ํ•ด์„
    • ํ–‰๋ ฌ AAA๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ
    • AAA์˜ ํ–‰ ๋ฒกํ„ฐ a1,โ€ฆ,anโˆˆRn\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^na1โ€‹,โ€ฆ,anโ€‹โˆˆRn์˜ ๊ฐ€๋Šฅํ•œ ๋ชจ๋“  ์„ ํ˜• ๊ฒฐํ•ฉ์œผ๋กœ ํ˜•์„ฑ๋œ Rn\mathbb{R}^nRn์˜ ์  ์ง‘ํ•ฉ SโŠ‚RnS \subset \mathbb{R}^nSโŠ‚Rn (์„ ํ˜• ๊ฒฐํ•ฉ ๊ณ„์ˆ˜๋Š” ๋ชจ๋‘ 0๊ณผ 1 ์‚ฌ์ด)
  • AAA์˜ ํ–‰๋ ฌ์‹์˜ ์ ˆ๋Œ“๊ฐ’ โˆฃAโˆฃ|A|โˆฃAโˆฃ๋Š” ์ง‘ํ•ฉ SSS์˜ "๋ถ€ํ”ผ(volume)" ์ธก์ •๊ฐ’
  • ์˜ˆ: A=[1332]A = \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix}A=[13โ€‹32โ€‹]. a1=[13]\mathbf{a}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}a1โ€‹=[13โ€‹], a2=[32]\mathbf{a}_2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}a2โ€‹=[32โ€‹]. ํ–‰๋ ฌ์‹ ๊ฐ’ โˆฃAโˆฃ=โˆ’7|A| = -7โˆฃAโˆฃ=โˆ’7. ํ‰ํ–‰์‚ฌ๋ณ€ํ˜•์˜ ๋„“์ด๋Š” 7
  • โˆฃAโˆฃ=0|A| = 0โˆฃAโˆฃ=0์€ AAA๊ฐ€ ํŠน์ด ํ–‰๋ ฌ(singular) (์ฆ‰, ๋น„๊ฐ€์—ญ(non-invertible))์ธ ๊ฒฝ์šฐ์—๋งŒ ์„ฑ๋ฆฝ
    • AAA๊ฐ€ ํŠน์ด ํ–‰๋ ฌ์ด๋ฉด ์™„์ „ ๊ณ„์ˆ˜๊ฐ€ ์•„๋‹ˆ๋ฏ€๋กœ, ์—ด ๋ฒกํ„ฐ๋Š” ์„ ํ˜• ์ข…์†
  • ์ •์˜
    • AโˆˆRnร—nA \in \mathbb{R}^{n \times n}AโˆˆRnร—n์— ๋Œ€ํ•ด, Aโˆ–i,โˆ–jโˆˆR(nโˆ’1)ร—(nโˆ’1)A_{\setminus i, \setminus j} \in \mathbb{R}^{(n-1) \times (n-1)}Aโˆ–i,โˆ–jโ€‹โˆˆR(nโˆ’1)ร—(nโˆ’1)๋Š” AAA์—์„œ iii๋ฒˆ์งธ ํ–‰๊ณผ jjj๋ฒˆ์งธ ์—ด์„ ์‚ญ์ œํ•˜์—ฌ ์–ป์€ ํ–‰๋ ฌ
  • ํ–‰๋ ฌ์‹์˜ ์ผ๋ฐ˜์ ์ธ (์žฌ๊ท€์ ) ๊ณต์‹

    โˆฃAโˆฃ=โˆ‘i=1n(โˆ’1)i+jaijโˆฃAโˆ–i,โˆ–jโˆฃ(์ž„์˜์˜ย jโˆˆ{1,โ€ฆ,n}์—ย ๋Œ€ํ•ด)|A| = \sum_{i=1}^n (-1)^{i+j} a_{ij} |A_{\setminus i, \setminus j}| \quad (\text{์ž„์˜์˜ } j \in \{1, \dots, n\} \text{์— ๋Œ€ํ•ด}) โˆฃAโˆฃ=i=1โˆ‘nโ€‹(โˆ’1)i+jaijโ€‹โˆฃAโˆ–i,โˆ–jโ€‹โˆฃ(์ž„์˜์˜ย jโˆˆ{1,โ€ฆ,n}์—ย ๋Œ€ํ•ด)

    =โˆ‘j=1n(โˆ’1)i+jaijโˆฃAโˆ–i,โˆ–jโˆฃ(์ž„์˜์˜ย iโˆˆ{1,โ€ฆ,n}์—ย ๋Œ€ํ•ด)= \sum_{j=1}^n (-1)^{i+j} a_{ij} |A_{\setminus i, \setminus j}| \quad (\text{์ž„์˜์˜ } i \in \{1, \dots, n\} \text{์— ๋Œ€ํ•ด}) =j=1โˆ‘nโ€‹(โˆ’1)i+jaijโ€‹โˆฃAโˆ–i,โˆ–jโ€‹โˆฃ(์ž„์˜์˜ย iโˆˆ{1,โ€ฆ,n}์—ย ๋Œ€ํ•ด)

    • AโˆˆRnร—nA \in \mathbb{R}^{n \times n}AโˆˆRnร—n์— ๋Œ€ํ•˜์—ฌ ์ด ๊ณต์‹์„ ์™„์ „ํžˆ ์ „๊ฐœํ•˜๋ฉด, ์ด n!n!n! ๊ฐœ์˜ ํ•ญ ์กด์žฌ
์ตœ๊ทผ ์ˆ˜์ •: 25. 11. 6. ์˜คํ›„ 12:07
Contributors: kmbzn
Next
2. Basics; Linear Algebra (2), Search (1)

BUILT WITH

CloudflareNode.jsGitHubGitVue.jsJavaScriptVSCodenpm

All trademarks and logos are property of their respective owners.
ยฉ 2025 kmbzn ยท MIT License